

FEDERAL BOARD OF INTERMEDIATE AND SECONDARY EDUCATION H-8/4, ISLAMABAD

No.1-10/FBISE/RES/334

14 March, 2025

NOTIFICATION

Assessment Frameworks for Practical Based Assessment (PBA) containing lists of experiments/praticals along with instructions and Model Question Papers (Composite) in the subjects of Physics, Chemistry, Biology and Computer Science at SSC and HSSC levels based on National Curriculum of Pakistan 2022-23 (Scheme of Studies 2006) are hereby notified for implementation with effect from Annual Examinations 2026 and onwards.

2. The Assessment Frameworks for Composite PBA (Scheme of Studies 2006) are available at FBISE website. The weblink is <u>https://www.fbise.edu.pk/curriculum_model_paper.php</u>.

(MIRZA ALI) Director (Test Development) Ph: 051-9269504 Email: <u>director@fbise.edu.pk</u>

Heads of all Institutions affiliated with FBISE at SSC & HSSC levels

Distribution:

- 1. Director General, Federal Directorate of Education, G-9/4, Islamabad
- 2. Director General, FGEI, Directorate (Cantonments/ Garrisons), Sir Syed Road, Rawalpindi Cantt
- 3. Assistant Chief of the Air Staff (Education), PAF Air Headquarters, Peshawar
- 4. Director General (Schools), Directorate of Education Gilgit-Baltistan
- 5. Director Education, Directorate of Naval Educational Services, Naval HQ, Islamabad
- 6. Deputy Director General (DDG), Army Public Schools and Colleges System Secretariat, GHQ, Rwp
- 7. Director, CB Education Directorate, C/o Chaklala Cantonment Board, Rawalpindi
- 8. Director (Education), Fauji Foundation Head Office, Welfare Division, Chaklala, Rawalpindi
- 9. Director General, OPF Head Office, G-5, Islamabad
- 10. Director Education, Kahuta Research Laboratory (KRL), Kahuta, District Rawalpindi
- 11. Mrs. Sakina Fowad Bukhari, Principal, City Lyceum School House No.394 St.No.4,
- Gulraiz-3 near Madina Mall, High Court Road, Rawalpindi12. Mr. Muhammad Ashraf Hiraj, Principal, Startwell Education House No.9, Main Khayban-e-
- Tanveer Chaklala Scheme-III, Rawalpindi Cantt
- 13. The Director, Punjab Group of Colleges, 6th Road, Rawalpindi
- 14. The Director Regional Office (North), Beaconhouse Regional Office (North), Capital View Road, Mohra Nur, Banigala Islamabad
- 15. The Director Regional Office (North), The City School, Street 7, NPF, Sector E-11/4, Islamabad
- 16. Roots International Schools and Colleges, Head Office, Main Service Road West, Opp. G-13/4, IBD
- 17. Brig Dr. Muhammad Hanif (R), SI(M), Principal, Dr. A Q Khan School & College, Bahria Town, Phase 8, Islamabad
- 18. The Citizen Foundation, Plot No. 20, Sector # 14, Near Brookes Chowrangi, Korangi Industrial Area, Karachi
- 19. Director, Maarif Pak Turk School & College, Head office, H-8/1 Islamabad
- 20. Director Education, PAEC Headquarter, K-Block Islamabad
- 21. All HODs, FBISE, Islamabad
- 22. Director IT (with the request to upload the same on FBISE website and social media)
- 23. Deputy Director (Colleges), Directorate of Education Gilgit-Baltistan
- 24. Incharge, FBISE, Sub-Office, Gilgit
- 25. Incharge, FBISE, Sub-Office, Skardu
- 26. PA to Chairman, FBISE, Islamabad
- 27. APS to Secretary, FBISE, Islamabad
- 28. APS to Director (R&A), FBISE, Islamabad
- 29. Chat Room. FBISE, Islamabad

ASSESSMENT FRAMEWORK FOR PRACTICAL BASED ASSESSMENT (PBA) - COMPOSITE

PHYSICS SSC LEVEL

NATIONAL CURRICULUM OF PAKISTAN (2022-23)

SCHEME OF STUDIES 2006

WE WORK FOR EXCELLENCE

FEDERAL BOARD OF INTERMEDIATE AND SECONDARY EDUCATION (FBISE), ISLAMABAD

Table of Contents

<u>S. No</u>	Contents	Page No.
1.	Acknowledgement	1
2.	About the PBA Assessment Framework	2
3.	Guidelines/instructions for teachers/paper setters	3
4.	List of Experiments aligned with SLOs (Composite PBA)	4
5.	Model Question Paper Physics SSC (COMPOSITE)	7

ACKNOWLEDGEMENT

It is a great honour that we at the Federal Board of Intermediate and Secondary Education (FBISE) have developed the Assessment Framework (AF) for the Practical Based Assessment (PBA) of Physics at the Higher Secondary School Certificate (SSC) level. The primary objective of the Assessment Framework is to optimize the Student Learning Outcomes (SLOs) of curriculum 2022-23 that are associated with practical concepts and laboratory work. This comprehensive framework has been crafted meticulously by subject matter and assessment experts who conducted an in-depth review of all learning outcomes of SSC level Physics curriculum.

This significant undertaking was the result of a series of extensive meetings and collaborative efforts of the subject and assessment experts. Their dedication and expertise have been instrumental in bringing this framework to fruition.

The Assessment Framework for Practical Based Assessment (PBA) will serve as a guiding document for students, teachers, and paper setters. Students will receive clear directions for preparing themselves for the PBA examinations. Similarly, teachers will use it as a guide to perform laboratory work and to prepare students for the final PBA examinations. Paper setters of PBA will also seek guidance from this document and prepare PBA paper accordingly for annual examinations. It may be noted that only those students will be able to attempt the PBA paper who have performed all the practicals in laboratory. Following subject as well as assessment experts remained constantly engaged in the development of the Assessment Framework for PBA:

- 1. Dr. Munazza Faheem, Associate Professor, Islamabad Model College for Girls, F-6/2, Islamabad
- 2. Dr. Humaira Anwar, Associate Professor, Islamabad Model College for Girls, F-7/4, Islamabad
- 3. Mr. Muhammad Jahangir Mirza, HOD Physics, OPF College for Boys, H-8/4 Islamabad
- 4. Mrs. Robina Ahmad, Assistant Professor, Islamabad Model College for Girls, I-8/4, Islamabad
- 5. Ms. Hoor-E-Irum, Assistant Professor, Islamabad Model College for Girls (PG), G-10/4, Islamabad
- 6. Mr. Muhammad Imran Khaliq, Assistant Professor, Islamabad Model College for Boys, G-10/4, Islamabad
- 7. Ms. Sehrish Imran, Lecturer, Islamabad Model College for Girls, I-8/4, Islamabad

The whole work was successfully accomplished under the able supervision and guidance of Dr. Ikram Ali Malik, Chairman, FBISE and due to the hard work and dedication of the staff of Research Section of FBISE, in particular, Syed Zulfiqar Shah, Deputy Secretary, Research and Academics who played pivotal role in finalizing the Assessment Framework for PBA.

MIRZA ALI Director (Test Development) FBISE, Islamabad

ABOUT THE PBA ASSESSMENT FRAMEWORK

To ensure clarity and precision in the understanding of Practical Based Assessment (PBA) Question Paper, the Student Learning Outcomes (SLOs) have been categorized into two distinct groups: formative for PBA and summative for PBA in the separately composed Assessment Frameworks for Classes SSC-I and SSC-II. Subsequently, all the SLOs of SSC-I and SSC-II meant for summative PBA have been translated into workable and functional composite lists of major and minor experiments which are part of this booklet. This extraction of lists of experiments helps in effectively measuring student progress and understanding of the scientific concepts linked with laboratory work. These experiments must be performed by the students under the supervision of their teachers in the laboratories in order to prepare themselves for the PBA Examinations.

The Assessment Framework for Practical Based Assessment (PBA) will act as a comprehensive guide for students, teachers, and paper setters. Students will receive clear instructions in order to perform experiments in the laboratory and prepare themselves for the PBA examination. Teachers will use the same to strategize the optimal use of the laboratory for performing experiments (major and minor).

The Model Question Paper for Practical Based Assessment (PBA), along with clear instructions, has also been developed and made part of this booklet to provide a structured format for upcoming examinations. The model question paper ensures consistency and fairness, offering students a comprehensive understanding of PBA examination.

All the experiments have been aligned with their corresponding SLOs marked summative for PBA. The purpose of this alignment is to explain how the experiments relate with their corresponding summative SLOs for PBA.

Instructions for paper setters have also been included before the PBA model question paper, providing self-explanatory guidance on the selection and nature of each question which is part of the model paper.

PRACTICAL BASED ASSESSMENT (PBA) COMPOSITE Physics SSC Level for Annual Examination 2026 & onwards Physics Curriculum (2022-23)-Scheme of Studies 2006

Guidelines/instructions for teachers/paper setters:

- i. The paper will consist of two sections i.e section A and B.
- Section A will include Major Practicals. This section will have two questions, each question carrying 6 marks having parts in it, and each question will be performance / calculation/procedures/observations based encompassing a single practical.
- Section B will include Minor Practicals. This section will also have two questions, each carrying 4 marks having parts in it. Each question may be based on single or multiple practicals.
- iv. The weightage of section A will be 60% i.e 12 marks, while that of section B will be 40 % i.e8 marks.
- v. In Practical Based Assessment (PBA), there will be no marks for practical notebooks and viva voce. However, students may record procedures, observations, apparatus and calculation etc on any type of plain papers/work sheets / practical folders for their future memory of all aspects of practical performance in order to attempt the PBA Examination amicably.
- Vi. It may be noted that performance of all the prescribed practicals is mandatory in the laboratory during the whole academic session because only those students will be able to attempt the PBA who have performed the practicals in the laboratory as per requirement of each practical.
- vii. MCQs will not be included/assessed in the Practical Based Assessment paper.
- viii. Questions carrying 0.5 marks will not be included/assessed as single part in any section of the PBA paper.

List of Experiments aligned with SLOs (Composite PBA) For SSC Annual Examination 2026 & onwards Physics Curriculum (2022-23) - Scheme of Studies 2006

Note: list o	In the Practical-Based Assessment (PBA), f experiments provided below, aligned	questions will be taken/developed from the with the summative SLOs listed in the
corre	sponding column. Section A (60% of practice	al marks <u>12 Marks</u>)
No.	List of Experiments	Aligned SLOs
	 Measure the radius and length of a metallic cylinder using vernier callipers up to correct number of significant figures. 	 [SLO: P-09-10-N-17] make measurements using common laboratory apparatus, such as millimeter scales, protractors, top-pan balances, newton meters, analogue or digital electrical meters, measuring cylinders, vernier callipers, micrometer screw gauges and thermometers. [SLO: P-09-A-19] Determine the least count of a data collection instrument (analog) from its scale [SLO: P-09-A-16] Round off and justify calculation estimates [Based on empirical data to an appropriate number of significant figures]. [SLO: P-09-10-N-20] measurement of physical quantities such as length, volume or force.
Major Practicals	 Analyze the thickness of a metallic wire with vernier calipers and a screw gauge with their respective precision. 	[SLO: P-09-10-N-17] make measurements using common laboratory apparatus, such as millimeter scales, protractors, top-pan balances, newton meters, analogue or digital electrical meters, measuring cylinders, vernier callipers, micrometer screw gauges and thermometers. [SLO: P-09-A-12] Justify and illustrate the use of common lab instruments to measure length [including how to measure a variety of lengths with appropriate precision using tapes, rulers, micrometers, and Vernier calipers (including reading the scales on analogue calipers and micrometers).
	3. Study the motion of a ball rolling down an angle iron. Measure the time intervals for different distances, and draw a distance-time graph for the ball's motion.	[SLO: P-09-10-N-21] measurement of small distances or short intervals of time. [SLO: P-09-10-N-28] timing motion or oscillations.
	 4. Determine the time period of a simple pendulum, and investigate the relationship between length and its time period. 	[SLO: P-09-A-14] Justify and illustrate how to measure time intervals using lab instruments [including clocks and digital timers] [SLO: P-09-A-15] Determine an average value for an empirical reading. [including small distance and for a short interval of time by measuring multiples (including the period of oscillations of a pendulum). [SLO: P-09-10-N-18] use a stop-watch to measure intervals of time, including the period of an oscillating system by timing an appropriate number of consecutive oscillations

			[SLO: P-09-10-N-28] timing motion or
			oscillations
	5.	Determine the specific heat capacity of	[SLO: P-09-10-N-26] cooling and heating,
		liquid (water) or a metal (lead) using the	including measurement of temperature
		method of mixtures.	[SLO: P-10- C-02] Suggest experiments to
			measure the specific heat capacities [of a solid and
			of a liquid].
	6.	Draw the temperature- time graph for	[SLO: P-09-10-N-26] cooling and heating,
		heating ice and water to measure the	Including measurement of temperature
		hat of veperization of water using	[SLO: P-10-C-27] Justify the experiments to
		method of mixtures	of veperization of ice and water finaluding
		method of mixtures.	of vaporization of ice and water including
			temperature time graph on heating ical
	7	Study the position of image formed by	$[SLO: P_0Q_1Q_N_3Q]$ ontics experiments using
	7.	convex lens (converging lens) when	equipment such as optics pins mirrors prisms
		object is placed at different positions in	lansas glass or Parsney blocks (both rectangular
		front of it	and sami circular) including the use of
		nom of n.	transparent translucent and onaque substances to
			investigate the transmission of light
	8	Study the effect of combining resistors	[SLO: P-09-10-N-29] electric circuits including
	0.	in series and parallel on the total	the connection and reconnection of these circuits
		(equivalent) resistance	and the measurement of current and potential
		(equivalent) resistance.	difference
		Section B (40% of prac	ctical marks — 8 Marks)
	1.	Determine the spring constant of a	[SLO: P-09-B-57] Sketch, plot and interpret
		Helical Spring using a load-extension	load—extension graphs for an elastic solid and
		graph.	describe the associated experimental procedures
			[SLO: P-09-B-58] Define and use the term 'limit
			of proportionality' for a load-extension graph.
			[Including identifying this point on the graph (an
			understanding of the elastic limit is not required)].
			[SLO: P-09-10-N-22] determining a derived
			quantity such as the extension per unit load for a
			spring, the value of a known resistance or the
			acceleration of an object.
			[SLO: P-09-B-22] Justify and illustrate the use of
			a force meter to measure weight.
ls			[SLO: P-09-10-N-27] experiments using springs
ica			and balances.
icti	2.	Determine the position of centre of	[SLO: P-09-B-48] Describe how to determine the
$\Pr{\epsilon}$		gravity of a plane (thin) famina using	position of the center of gravity of a plane famina
r]	2	Determine the volume of imagular	USING a plumo Line
ino	5.	benefining the volume of integular	[SLO: P-09-10-N-25] comparing derived
M		mathed and calculate its density	$[SLO: P 00 \land 13]$ Justify and illustrate the use of
		method and calculate its defisity.	[SLO. F-09-A-15] Justify and mustified the use of measuring cylinders to measure volume finduding
			hoth measurement of volume of liquid and
			determining the volume of a solid by
			displacement]
			[SI O: P-09-B-21] Justify and illustrate the use of
			electronic balances to measure mass IUnderstand
			the internal workings of the electronic balance is
			not required: just how to practically used
			instrument in appropriate situations.
			[SLO: P-09-10-N-19] use both analogue scales
			and digital displays.
			[SLO: P-09-10-N-27] experiments using springs
			and balances.

	4.	Studying the laws of reflection using a	[SLO: P-09-10-N-24] comparing measured
		plane mirror.	quantities such as angles of reflection.
			[SLO: P-09-10-N-30] optics experiments using
			equipment such as optics pins, mirrors, prisms,
			lenses, glass or Perspex blocks (both rectangular
			and semi- circular), including the use of
			transparent, translucent and opaque substances to
			investigate the transmission of light
	5.	Investigate refraction through a glass	[SLO: P-09-10-N-24] comparing measured
		slab and calculate its refractive index.	quantities such as angles of reflection
			[SLO: P-09-10-N-30] optics experiments using
			equipment such as optics pins, mirrors, prisms,
			lenses, glass or Perspex blocks (both rectangular
			and semi- circular), including the use of
			transparent, translucent and opaque substances to
			investigate the transmission of light.
			[SLO: P-10-D-39] Describe an experiment to
			show refraction of light by transparent blocks of
			different shapes.
-	6.	Find critical angle of a prism.	[SLO: P-10-D-40] Define the terms critical
		0 1	angle and total internal reflection
-	7	Measure the current and voltage across	[SLO: P-09-10-N-29] electric circuits including
		a resistor and plotting V-I	the connection and reconnection of these circuits.
		characteristics.	and the measurement of current and potential
			difference.
			[SLO: P-10-E-34] Define and apply Ohm's law
			[Including reference to constant temperature. Use
			the equation resistance = p.d/current $R = V/I$ to
			solve simple problems.]
			[SLO: P-10-E-36] Interpret current-voltage graphs
			[including for a resistor of constant resistance, a
			filament lamp and a diode.
ſ	8.	Identify the relationship between the	[SLO: P-09-10-N-23] testing and identifying the
		potential difference across a wire and	relationship between two variables such as
		its length.	between the potential difference across a wire and
			its length.
			[SLO: P-09-10-N-29] electric circuits, including
			the connection and reconnection of these circuits,
			and the measurement of current and potential
			difference.

Model Questions Paper Physics SSC (COMOSITE) FOR ANNUAL EXAMINATION 2026 & ONWARDS Practical Based Assessment (PBA) Physics Curriculum (2022-23) - Scheme of Studies 2006

(02)

Total Marks: 20

Time: 2 hours

Note: Attempt all questions and write answers within provided spaces on E-Sheet.

SECTION-A (12 Marks)

Q.1 Consider the series combination of resistances:

- i. Draw the labelled circuit diagram for two resistors in series with all circuit components. (02)
- ii. Copy and complete the following table. All the measurements are taken in SI units. (03)

No. of Obs	Voltmeter Reading		Voltmeter Reading		Equivalent Resistance R _e	Total Voltage V	Net Current I	Resistance by Ohm's law R	Difference R _e -R
SI Units	() V ₁ V ₂		(- R ₁	$ \begin{array}{c c} () \\ \hline R_1 & R_2 \end{array} $ ()		()	()	()	()
1	2	10	10	50					
2	6	10	60	100					
3	4.8	12	80	200					

iii. What will be effect on the equivalent resistance of the circuit (mentioned in the table) if another resistance is added in series with it? (01)

Q.2 Recall the experiment "motion of a ball rolling down an angle iron" and answer the following questions:

- i. Write down apparatus which is required to study the motion of a ball rolling down an angle iron? (01)
- ii. Copy and complete the given table.

No. of		Time (s)			
Obs	Distance (cm)	t1	t ₂	Mean	Velocity (cms ⁻¹)
		•1	C2	time t	
1	200	4.4	4.6		
2	180	4.1	4.0		

3	160	3.9	3.3	
4	140	3.2	3.1	
5	120	2.8	2.6	
6	100	2.5	2.0	

- iii. Draw distance-time graph by using values from above table. (02)
- iv. What will be effect on the speed of rolling ball if the angle of inclination is reduced? (01)

SECTION-B (8 Marks)

Q.3 Consider the experiment of refraction of light through glass slab and answer the following questions:

i. Find angle of incidence and angle of refraction from figure given in Q. 3 (02)

(02)

ii. Calculate refractive index of the glass.

Q.4 The given graph shows the extension in the helical spring by increasing load.

- i. Name the dependent variable and independent variable used in above graph. (01)
- ii. Calculate the slope from force-extension graph by taking points A and B. (02)
- iii. Which quantity is represented by the slope of force-extension graph? (01)

f / Federal.BISE.Official 🛛 🔊 💿 / FBISEOfficial 🛛 👌 🎯 / fbise.official

